DS n°7: Polynômes, matrices, structures algébriques

Durée : 3 heures. Calculatrices non autorisées. Toute affirmation non triviale doit être justifiée.

Exercice: Table de groupe

On considère un groupe (G,\cdot) avec quatre éléments (distincts). On note i,j,k,ℓ ces quatre éléments de sorte que $G=\{i,j,k,\ell\}$. On suppose que G est abélien, et on dispose d'une table (incomplète) qui donne le résultat du produit de deux éléments de G:

	i	j	k	ℓ
i	i	j	k	ℓ
j	j	i		
k	k		i	
ℓ	ℓ			i

Par exemple, la case de la ligne i et de la colonne ℓ correspond au produit $i\ell$, et donc $i\ell = \ell$. Comme le groupe est abélien, on a aussi $\ell i = \ell$, et donc la case de la ligne ℓ et de la colonne i contient ℓ . Plus généralement, comme G est abélien, la table est symétrique par rapport à la diagonale (celle avec des i).

- 1) Quel est l'élément neutre de G? Justifier.
- **2)** Déterminer $i^{-1}, j^{-1}, k^{-1}, \ell^{-1}$.
- 3) On cherche à déterminer le produit jk.
 - a) On suppose que jk = j. Déduire une contradiction.
 - b) Même question avec jk = k.
 - c) Peut-on avoir jk = i? Conclure.
- 4) Recopier la table et la compléter (sans justifier)

Exercice : Racines p-ièmes de I_n

Soit $n, p \in \mathbb{N}$ avec $n \geq 2$ et $p \geq 2$. On pose :

$$\mathcal{R}_p := \{ A \in \mathcal{M}_n(\mathbb{R}) \mid A^p = I_n \}$$

On rappelle qu'on note $GL_n(\mathbb{R})$ le sous-ensemble des matrices inversibles.

- 1) \mathcal{R}_p est-il un sous-anneau de $\mathcal{M}_n(\mathbb{R})$?
- **2)** Soit $A \in \mathcal{R}_p$ et $B \in GL_n(\mathbb{R})$. Montrer que $B^{-1}AB \in \mathcal{R}_p$.
- 3) Soit $A \in \mathcal{R}_p$. Montrer que $A \in GL_n(\mathbb{R})$ et déterminer A^{-1} . Montrer que $A^{-1} \in \mathcal{R}_p$.
- 4) Déterminer toutes les matrices de $\mathcal{R}_p \cap D_n(\mathbb{R})$, où $D_n(\mathbb{R})$ désigne le sous-ensemble des matrices diagonales.
- 5) Soit q un entier naturel supérieur ou égal à 2, et d le plus grand commun diviseur de p et q. Montrer que $\mathcal{R}_p \cap \mathcal{R}_q = \mathcal{R}_d$.

Problème : polynômes de Tchebyshev

On définit une suite de polynômes $(T_n)_{n\geq 0}$ par :

$$T_0 = 1 T_1 = X$$

$$\forall n \in \mathbb{N} \qquad T_{n+2} = 2XT_{n+1} - T_n$$

Partie A – Généralités

- 1) Calculer T_2 , T_3 , T_4 et T_5 .
- 2) Montrer que pour tout $n \in \mathbb{N}$, $T_n(1) = 1$.
- 3) Déterminer le degré de T_n .
- 4) Déterminer le coefficient dominant de T_n pour tout $n \geq 1$.

Partie B – Racines de T_n

5) Montrer que pour tout $n \in \mathbb{N}$ et pour tout $x \in \mathbb{R}$, on a

$$\cos((n+2)x) = 2(\cos x)\cos((n+1)x) - \cos(nx)$$

- **6)** En déduire que pour tout $(n, \theta) \in \mathbb{N} \times \mathbb{R}$, $T_n(\cos \theta) = \cos(n\theta)$.
- 7) Résoudre l'équation

$$\cos(nx) = 0$$

d'inconnue $x \in [0, \pi]$.

- 8) En déduire que T_n admet n racines distinctes dans [-1,1], puis déterminer toutes ses racines dans \mathbb{C} .
- **9)** (bonus, ne sert pas pour la suite) Factoriser T_n dans $\mathbb{R}[X]$.

Partie C – Relation arithmétique

10) Soit $P_1, P_2 \in \mathbb{R}[X]$ tels que :

$$\forall \theta \in \mathbb{R}$$
 $P_1(\cos \theta) = P_2(\cos \theta)$

Montrer que $P_1 = P_2$.

11) Soit $m, n \in \mathbb{N}$ tels que $0 \le m \le n$. Montrer que

$$T_m T_n = \frac{1}{2} (T_{n+m} + T_{n-m})$$

12) On suppose que $m, n \in \mathbb{N}$ sont tels que m < n < 3m. On suppose que Q et R sont respectivement le quotient et le reste de la division euclidienne de T_n par T_m . Montrer que

$$Q = 2T_{n-m} \qquad \text{et} \qquad R = -T_{|n-2m|}$$

 2